On the Matrix Square Root via Geometric Optimization

نویسندگان

  • Suvrit Sra
  • SUVRIT SRA
چکیده

This paper is triggered by the preprint [P. Jain, C. Jin, S.M. Kakade, and P. Netrapalli. Computing matrix squareroot via non convex local search. Preprint, arXiv:1507.05854, 2015.], which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary to claims of Jain et al., the author’s experiments reveal that Newton-like methods compute matrix square roots rapidly and reliably, even for highly ill-conditioned matrices and without requiring commutativity. The author observes that gradient-descent converges very slowly primarily due to tiny step-sizes and ill-conditioning. The paper derives an alternative first-order method based on geodesic convexity; this method admits a transparent convergence analysis (< 1 page), attains linear rate, and displays reliable convergence even for rank deficient problems. Though superior to gradient-descent, ultimately this method is also outperformed by a well-known scaled Newton method. Nevertheless, the primary value of the paper is conceptual: it shows that for deriving gradient based methods for the matrix square root, the manifold geometric view of positive definite matrices can be much more advantageous than the Euclidean view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

On the square root of quadratic matrices

Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.

متن کامل

Newton's Method for the Matrix Square Root*

One approach to computing a square root of a matrix A is to apply Newton's method to the quadratic matrix equation F( X) = X2 A =0. Two widely-quoted matrix square root iterations obtained by rewriting this Newton iteration are shown to have excellent mathematical convergence properties. However, by means of a perturbation analysis and supportive numerical examples, it is shown that these simpl...

متن کامل

Sparse Identification of Polynomial and Posynomial Models

Posynomial models are widely used in various engineering design endeavors, such as circuits, aerospace and structural design, mainly due to the fact that design problems cast in terms of posynomial objectives and constraints can be solved efficiently by means of a convex optimization technique known as geometric programming (GP). However, while quite a vast literature exists on GP-based design,...

متن کامل

Investigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis

In this article the general non-symmetric parametric form of the incremental secant stiffness matrix for nonlinear analysis of solids have been investigated to present a semi analytical sensitivity analysis approach for geometric nonlinear shape optimization. To approach this aim the analytical formulas of secant stiffness matrix are presented. The models were validated and used to perform inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017